Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

O,O-Bis(2-*tert*-butylphenyl) chlorothio-phosphonate

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 K Mean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.033 wR factor = 0.087 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{20}H_{26}ClO_2PS$, displays distorted tetrahedral geometry around the P atom, which lies on a crystallographic twofold axis. The S and Cl substituents on the P atom are disordered about the twofold axis. The internal angles in the aromatic rings vary significantly due to the steric influence of the *tert*-butyl groups. Weak intramolecular $C-H\cdots O$ hydrogen bonds generate two S(6) motifs. The crystal structure is stabilized only by van der Waals interactions.

Received 27 November 2006 Accepted 20 December 2006

Comment

In the course of a systematic structural investigation of thiophosphorus compounds (Odabaşoğlu *et al.*, 2005*a,b*, 1999, 1992; Yılmaz *et al.*, 1998; Büyükgüngör *et al.*, 1995; Odabaşoğlu & Gümrükçüoğlu, 1993), the structure of the title compound, (I), was determined (Fig. 1).

Atom P1, which lies on a crystallographic twofold axis, adopts a distorted tetrahedral geometry. The S1 and Cl1 substituents on P1 are disordered about the twofold axis. The P=S double-bond distance [2.002 (8) Å] is in the range of equivalent distances reported by Schomaker & Stevenson (1941) for PSF₃ (1.85 Å) and for PSCl₃ (1.91 Å). The P-O bond length [1.5626 (10) Å] is similar to that of the P-OAr bond for (2S)-2-[1-(2,4-difluoro-5-iodophenyl)-2-deoxy- β -D-ribofuranos-5-yloxy]-8-methyl-4H-1,3,2-benzodioxa-phosphole 2-oxide [1.565 (4) Å], (Ohkura *et al.*, 2004).

The internal angles in the aromatic rings vary significantly, from 114.18 (14) to 123.90 (13)°. This presumably reflects the steric influence of the *tert*-butyl groups. The rings are nonetheless planar, with a maximum deviation from the plane defined by the six ring atoms of 0.011 (1) Å (for C1). The dihedral angle between symmetry-related benzene rings in (I) is $45.02 (6)^\circ$, compared with $41.2 (2)^\circ$ in O,O-bis(2-tert-butyl-4-methoxyphenyl)chlorothiophosphonate (Odabaşoğlu *et al.*, 2005a) and $43.8 (2)^\circ$ in O,O-bis(2-tert-butyl-4-methylphenyl)-phosphorochlorodithioate (Odabaşoğlu *et al.*,2005b). The crystal structure of (I) is stabilized only by van der Waals interactions. There are weak intramolecular hydrogen bonds (Table 1).

© 2007 International Union of Crystallography All rights reserved

Experimental

Compound (I) was prepared by the method described previously by Odabaşoğlu & Gümrükçüoğlu (1993), using 2-tert-butylphenol and PSCl₃ as starting materials. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in *n*-hexane (yield 64%; m.p. 383 K). Elemental analysis, calculated: C 60.53, H 6.85%; found: C 60.59, H 6.70%.

Crystal data

$C_{20}H_{26}ClO_2PS$	Z = 4
$M_r = 396.89$	$D_x = 1.282 \text{ Mg m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 17.8761 (16) Å	$\mu = 0.38 \text{ mm}^{-1}$
b = 8.2053 (5) Å	T = 296 K
c = 14.5700 (14) Å	Prism, colourless
$\beta = 105.863 \ (7)^{\circ}$	$0.78 \times 0.65 \times 0.45 \text{ mm}$
$V = 2055.7 \ (3) \ A^3$	

Data collection

Stoe IPDSII diffractometer	
ω scans	20
Absorption correction: integration	179
(X-RED; Stoe & Cie, 2002)	$R_{\rm in}$
$T_{\rm min} = 0.771$, $T_{\rm max} = 0.814$	$\theta_{\rm m}$

16049 measured reflections 2010 independent reflections 1796 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$ $\theta_{\rm max} = 26.0^{\circ}$

Refinement

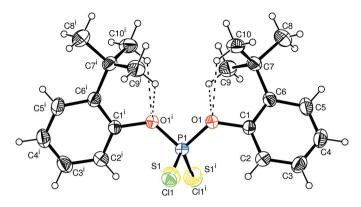

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.6643P]
$wR(F^2) = 0.087$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2010 reflections	$\Delta \rho_{\text{max}} = 0.11 \text{ e Å}^{-3}$
124 parameters	$\Delta \rho_{\min} = -0.34 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C9−H9 <i>A</i> ···O1	0.96	2.37	3.011 (2)	124
C10−H10 <i>B</i> ···O1	0.96	2.36	3.0041 (19)	124

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{\rm iso}({\rm H})$ = $1.2 U_{\rm eq}({\rm C})$ for aromatic H, and with C-H = 0.96Å and $U_{\rm iso}({\rm H})$ = $1.5 U_{\rm eq}({\rm C})$ for methyl H.

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s)

Figure 1 The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are drawn as dashed lines. [Symmetry code: (i) -x, y, $-z + \frac{1}{2}$].

used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

Büyükgüngör, O., Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Eichhorn, K. & Mattern, G. (1995). *Acta Cryst.* C**51**, 1207–1209.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Odabaşoğlu, M., Büyükgüngör, O. & Albayrak, C. (2005a). Acta Cryst. E61,

Odabaşoğlu, M., Büyükgüngör, O. & Albayrak, Ç. (2005b). *Acta Cryst.* E**61**, 02525–02527.

Odabaşoğlu, M. & Gümrükçüoğlu, İ. E. (1993). Turk. J. Chem. 17, 29-32.

Odabaşoğlu, M., Gümrükçüoğlu, İ. E. & Tapramaz, R. (1999). *Phosphorus Sulfur Silicon.* **152**, 27–34.

Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Yılmaz, V. T. & Howie, R. A. (1992). *Turk. J. Chem.* **16**, 293–298.

Ohkura, K., Sun, W. Y., Seki, K., Knaus, E. E. & Wiebe, L. I. (2004). *Acta Cryst.* C60, o789–o791.

Schomaker, V. & Stevenson, D. P. (1941). J. Am. Chem. Soc. 63, 37-40.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

Yılmaz, V. T., Odabaşoğlu, M. & Howie, R. A. (1998). Turk. J. Chem. 22, 409–414.